Weyl Standard C++
C++ guidelines for extreme performance requirements, using modern C++23 features with emphasis on clarity and disambiguation in agent-heavy development.
// s4 // cpp // guidelines
Strategy and Motivation
We use C++ in situations where we need to do something extreme along one or more dimensions: we are in a regime where no compromise is possible. Typically we do this by having low-friction access to efficient, ergonomic implementations of best-in-class algorithms. Sometimes, we have the opportunity to do something best-in-class ourselves; we consider such proposals with open minds and healthy skepticism. Our C++ codebase and the investment represented by maintaining it is the optionality premium on these degrees of freedom.
Much if not most excellent modern C++ code is proprietary because worthwhile C++ code is expensive and most contemporary projects don’t need it. This leads to a situation where it is difficult to learn well outside of an elite technology or finance company. For non-commercial examples of extreme requirements, consider people working at the frontiers of human knowledge: CERN has excellent code because they operate in regimes that would be daunting for any company.
This document is aimed at three audiences:
- Experienced C++ programmers who have missed recent developments
- Programmers new to serious C++ who want to skip learning curve friction
- Agents with extensive informational resources who need clear guidelines
The Economics of Code in Agent-Heavy Development
In a codebase with heavy agent contribution, traditional economics invert:
- Code is written once by agents in seconds
- Code is read hundreds of times by humans and agents
- Code is debugged when you’re under pressure by tired humans
- Code is modified by agents who lack the original context
Every ambiguity compounds exponentially.
The Fundamental Principle
// this costs an agent 0.1 seconds to write, a human 10 seconds to debug:auto e = edge{};if (e.p > 0) process(e);
// this costs an agent 0.2 seconds to write, saves hours of cumulative confusion:auto inference_configuration = s4::inference::config::engine{};if (inference_configuration.batch_size > 0) { initialize_inference_engine(inference_configuration);}Optimize for disambiguation, not brevity.
Why Config Parsing Is Sacred
Configuration parsing is the most critical code in any system because:
- Multiplication Effect: One config bug affects every component
- Trust Boundary: External input that everything else trusts implicitly
- Silent Corruption: Config errors manifest as business logic failures
- Audit Trail: In regulated environments, you must prove correct configuration
Config parsing should be human-written, brutally simple, and fail-fast.
High Level Choices
- Explicit Types over
AAA(for agents) - Disambiguation beats brevity - Fully qualified names - No
using namespace, absolute clarity - C++23 features - Use modern constructs maximally
- Measure, don’t guess - Data-driven optimization
- Name for
grep- Every identifier must be globally searchable
Naming Conventions
The Disambiguation Imperative
In an agent-heavy codebase, names must be:
- Globally unique within their semantic domain
- Self-documenting without context
- Searchable with basic tools
// BAD: Will create confusion at scaleclass parser;auto config = load();int process(data& d);
// GOOD: Unambiguous even with 100 agents contributingclass tokenizer_engine;auto inference_configuration = load_inference_configuration();int process_tensor_batch(tensor_batch_data& batch);Core Naming Rules
- snake_case for everything:
tensor_batch,model_weights,execute_inference() - Full words over abbreviations:
configurationnotconfig,connectionnotconn - Domain prefixes for common concepts:
cuda_stream,device_memory,host_memory - member_suffix_ for members:
tensor_shape_,latency_us_,device_id_ - Preserve acronyms:
NVFP4_quantizernotNvfp4Quantizer
The Three-Letter Rule
If an abbreviation is less than 4 characters, it’s too short:
// BADauto cfg = load_cfg();auto conn = db.get_conn();auto res = process(req);
// GOODauto configuration = load_configuration();auto connection = database.get_connection();auto result = process_request(request);Standard Abbreviations (Use Sparingly)
Only when the full name would be absurd:
idx/jdx- index (prefer descriptive names likerow_index)rxbuf/txbuf- receive/transmit buffer (domain-specific)ctx- context (only when type makes it unambiguous)
Code Organization
Directory Structure Guidelines
s4/├── core/ # Foundation utilities (exceptions, hash, workspace, nvtx)│ ├── exceptions.h│ ├── exceptions.cpp│ ├── generator.h│ └── workspace.h├── cuda/ # CUDA primitives and utilities│ ├── nvfp4/│ │ ├── nvfp4.h│ │ ├── nvfp4.cuh│ │ └── nvfp4.cu│ └── cccl_standard.h├── attention/ # Attention mechanisms and kernels│ ├── sage_attention_plugin.h│ ├── sage_attention_plugin.cu│ └── score_correction.h├── tensor/ # Tensor abstractions│ ├── device_tensor.h│ └── view.h├── dtypes/ # Data type system│ ├── dtype.h│ ├── cuda_types.h│ └── dispatch.h└── trt/ # TensorRT integration ├── affine_unary_plugin.h └── affine_unary_plugin.cu- Headers and implementations are adjacent -
foo.handfoo.cpplive together - Test files live in separate
tests/directory:tests/unit/test_*.cpp - Property tests:
tests/property/test_*_properties.cpp - Python hypothesis tests:
tests/python/test_*_hypothesis.py - CUDA device code uses
.cuextension, device-only headers use.cuh
Headers
#pragma once
#include <chrono>#include <memory>#include <span>
#include "s4/core/exceptions.h"#include "s4/dtypes/dtype.h"#include "s4/tensor/device_tensor.h"
namespace s4::inference {
class engine { // Full descriptive namespublic: engine();
// full words in function names auto initialize_from_configuration(std::string configuration_path) noexcept -> s4::core::status;
auto run_inference(std::span<const float> input_tensor) noexcept -> s4::core::result<tensor_batch>;
private: // clear member names with units where applicable std::unique_ptr<model_executor> executor_; std::chrono::microseconds inference_timeout_us_; int device_id_;};
} // namespace s4::inferenceImplementation
#include "s4/inference/engine.h"
#include <format>
#include "s4/core/logging.h"#include "s4/cuda/device.h"
namespace s4::inference {
auto engine::initialize_from_configuration( std::string configuration_path) noexcept -> s4::core::status {
// Descriptive variable names throughout auto configuration_result = s4::core::fs::read_file_to_string(configuration_path);
if (!configuration_result) { return s4::core::fail( std::format("[s4] [inference] [engine] failed to read configuration: {}", configuration_result.error().what())); }
auto parsed_configuration = parse_inference_configuration(configuration_result.value()); // ...
return s4::core::ok();}
} // namespace s4::inferenceModern C++23 Patterns
Core Hardware Realities
Modern GPUs and CPUs are not the abstraction models from your CS courses, they’re not even the ones you worked with a few years ago:
- Cache lines are 64 bytes - This is the unit of memory transfer. Period.
- Branches are heinously expensive - A mispredicted branch costs 15-20 cycles on modern CPUs
- The prefetcher is your friend - Linear access patterns let it work magic
- The compiler is your best optimizer - With
-O3 -march=native, it knows tricks you don’t - This is even more true of Myelin - When attempting to go fast on a GPU, you will almost never outsmart Myelin except when it has a pathological failure.
Performance Anti-Patterns and Reality Checks
Write simple, clear loops. The compiler will optimize them:
// BAD: Hand-rolled "optimization" that confuses compiler and humansfor (; data_index + 8 <= data_length; data_index += 8) { auto chunk = *reinterpret_cast<const uint64_t*>(data + data_index); // Complex bit manipulation}
// GOOD: Clear intent, compiler optimizes perfectlyfor (auto data_index = 0; data_index < data_length; ++data_index) { if (data[data_index] == target_value) { match_count++; }}Error Handling Philosophy
We don’t throw exceptions. We use s4::core::result<T> and when something is truly unrecoverable:
// When failure is recoverable - return resultauto parse_configuration(std::string_view configuration_json) noexcept -> s4::core::result<server_configuration> {
if (configuration_json.empty()) { return s4::core::fail<server_configuration>("empty configuration string"); }
// parse... return s4::core::ok(server_configuration{...});}
// when failure is unrecoverable - fatal and we do the postmortem...if (!critical_resource_handle) { s4::fatal("critical resource unavailable: {}", resource_name);}Error Handling Patterns
// DO: Use specific fail overloadsif (size > max_size) { return s4::fail<buffer>("buffer size {} exceeds maximum {}", size, max_size);}
if (::listen(socket_fd, backlog) < 0) { return s4::fail_errno<socket>("failed to listen on socket");}
// DON'T: Build error messages manuallyif (size > max_size) { return s4::fail<buffer>(std::format("buffer size {} exceeds maximum {}", size, max_size));}Result Type Usage
// prefer explicit type parameters for fail() - aids readability...auto parse_config(std::string_view json) -> s4::core::result<configuration> { if (json.empty()) { return s4::fail<configuration>("empty configuration string"); } // ...}
// for functions returning status, the type parameter can be omittedauto validate_connection() -> s4::core::status {
if (!is_connected()) { return s4::fail("not connected"); // T defaults to monostate }
return s4::ok();}Const-Correctness
// DO: mark everything const that can be...auto process_batch(const tensor_batch& batch_data) const noexcept -> s4::core::status;
// DO: use const for local variables that don't change...const auto configuration = load_configuration();const auto batch_count = batches.size();
// DON'T: forget const on method that doesn't modify state...auto get_status() -> status_code; // n.b. should be const, often [[nodiscard]]...Span Usage
// DO: use `span` or `mdspan` for non-owning array views...auto process_batch(std::span<const inference_request> requests) -> s4::core::status;
// DON'T: use raw pointer + sizeauto process_batch(const inference_request* requests, size_t count) -> s4::core::status;
// DO: use span for fixed-size buffers...auto read_into(std::span<std::byte> buffer) -> s4::core::result<size_t>;CUDA and GPU Computing Patterns
CCCL-Forward Modern CUDA
We use CUDA C++ Core Libraries (CCCL) for modern, standards-compliant CUDA code. As of March 2024, CCCL unifies Thrust, CUB, and libcudacxx.
Key principle: Always prefer cuda::std:: over std:: - it works in both host and device code, works with NVRTC, and is tested for CUDA.
#include <cuda/std/span>#include <cuda/std/array>#include <cuda/stream_ref>#include <thrust/device_vector.h>#include <thrust/host_vector.h>
// DO: Use cuda::std:: entities (not std::) for device compatibility__global__ void process_kernel(cuda::std::span<float> input_data, cuda::std::span<float> output_data) { int thread_id = blockIdx.x * blockDim.x + threadIdx.x; if (thread_id < input_data.size()) { output_data[thread_id] = input_data[thread_id] * 2.0f; }}
// DO: Use cuda::stream_ref for stream managementauto launch_inference_kernel(cuda::stream_ref stream, std::span<const float> device_input) -> s4::core::status { constexpr auto threads_per_block = 256; auto block_count = (device_input.size() + threads_per_block - 1) / threads_per_block;
process_kernel<<<block_count, threads_per_block, 0, stream>>>( cuda::std::span{device_input.data(), device_input.size()}, // ... );
return s4::cuda::check_last_error();}Thrust Vectors for Memory Management
Thrust provides STL-like containers for host and device memory:
#include <thrust/device_vector.h>#include <thrust/host_vector.h>#include <thrust/universal_vector.h>#include <thrust/async/copy.h>
// DO: Use thrust::device_vector for device-side dataauto prepare_inference_batch(std::span<const float> host_data) -> s4::core::result<thrust::device_vector<float>> {
// Host vector with STL-like interface auto host_batch = thrust::host_vector<float>(host_data.begin(), host_data.end());
// Transfer to device (synchronous) - type deduced auto device_batch = host_batch;
return s4::ok(std::move(device_batch));}
// DO: Use thrust::async for non-blocking operationsauto prepare_batch_async(std::span<const float> host_data, cudaStream_t stream) -> thrust::device_future<thrust::device_vector<float>> {
auto host_batch = thrust::host_vector<float>(host_data.begin(), host_data.end()); auto device_batch = thrust::device_vector<float>(host_batch.size());
// Asynchronous copy return thrust::async::copy(thrust::device.on(stream), host_batch.begin(), host_batch.end(), device_batch.begin());}
// DO: Use thrust::universal_vector for unified memory scenariosauto shared_buffer = thrust::universal_vector<float>(batch_size);// Accessible by both host and device without explicit transfers
// DON'T: Access individual device_vector elements in loops// Each access requires cudaMemcpy!for (auto idx = 0; idx < device_vec.size(); ++idx) { auto value = device_vec[idx]; // BAD: N cudaMemcpy calls}
// DO: Transfer once, process in bulkauto host_copy = device_vec; // One transfer, type deducedfor (auto idx = 0; idx < host_copy.size(); ++idx) { auto value = host_copy[idx]; // GOOD: Local memory access}mdspan for Multidimensional Data (C++23)
mdspan provides non-owning views of multidimensional arrays. CUDA support is available via Kokkos implementation:
#include <mdspan>// Future: #include <cuda/std/mdspan> when available in libcudacxx
// DO: Use mdspan for type-safe multidimensional indexingtemplate<typename T>using matrix_view = std::mdspan<T, std::dextents<size_t, 2>>;
template<typename T>using tensor3d_view = std::mdspan<T, std::dextents<size_t, 3>>;
// DO: Express tensor operations with clear dimensionalityauto quantize_weight_matrix(matrix_view<const float> weights_fp32, matrix_view<uint8_t> weights_nvfp4, float scale_factor) -> s4::core::status {
if (weights_fp32.extent(0) != weights_nvfp4.extent(0) || weights_fp32.extent(1) != weights_nvfp4.extent(1)) { return s4::fail("dimension mismatch: fp32[{},{}] vs nvfp4[{},{}]", weights_fp32.extent(0), weights_fp32.extent(1), weights_nvfp4.extent(0), weights_nvfp4.extent(1)); }
// C++23 bracket operator for multidimensional access for (auto idx = 0; idx < weights_fp32.extent(0); ++idx) { for (auto jdx = 0; jdx < weights_fp32.extent(1); ++jdx) { weights_nvfp4[idx, jdx] = quantize_value(weights_fp32[idx, jdx], scale_factor); } }
return s4::ok();}
// DO: Use mdspan for batch tensor layouts (N, C, H, W)auto process_image_batch(tensor3d_view<const float> batch, // [batch, height, width] size_t channels) -> s4::core::status {
auto batch_size = batch.extent(0); auto height = batch.extent(1); auto width = batch.extent(2);
s4::info("[s4] [tensor] processing batch shape=[{},{},{}] channels={}", batch_size, height, width, channels);
// Clear dimensional semantics return s4::ok();}CUTLASS cute::Tensor
CUTLASS cute::Tensor provides layout-aware tensor abstractions for high-performance kernels:
#include <cute/tensor.hpp>
using namespace cute;
// DO: Use cute::Tensor for layout-aware kernel codetemplate<class T, class Layout>__global__ void gemm_kernel(Tensor<T, Layout> const& A, Tensor<T, Layout> const& B, Tensor<T, Layout>& C) {
// cute::Tensor provides hierarchical operations auto tile_shape = make_shape(Int<16>{}, Int<16>{});
// Access with logical coordinates for (auto idx = 0; idx < size<0>(A); ++idx) { for (auto jdx = 0; jdx < size<1>(B); ++jdx) { C(idx, jdx) = A(idx, 0) * B(0, jdx); // Simplified GEMM } }}
// DO: Create tensors with explicit layout controlauto create_row_major_tensor(float* device_ptr, size_t rows, size_t cols) { auto shape = make_shape(rows, cols); auto stride = make_stride(cols, Int<1>{}); // Row-major: stride by cols auto layout = make_layout(shape, stride);
return make_tensor(device_ptr, layout);}
// DO: Use cute for copy algorithms with optimal layoutstemplate<class TA, class ALayout, class TB, class BLayout>__global__ void copy_kernel(Tensor<TA, ALayout> const& src, Tensor<TB, BLayout>& dst) {
// Generic copy that respects layout for (auto idx = 0; idx < size(src); ++idx) { dst(idx) = src(idx); }}
// DO: Integrate with PyTorch via dlpack (Python API, 2025)// Python: cute_tensor = cute.from_dlpack(torch_tensor)// Access shape, stride, memspace, element_type attributesNVFP4 Quantization Patterns
NVFP4 (4-bit floating point) requires careful handling for optimal inference performance:
namespace s4::quantization {
// Explicit quantization configurationstruct nvfp4_config { float scale_factor; float zero_point; bool use_symmetric_quantization; size_t block_size; // Quantization block size in elements};
// DO: Make quantization operations explicit and verifiableauto quantize_tensor_to_nvfp4(cuda::std::span<const float> input_fp32, cuda::std::span<uint8_t> output_nvfp4, const nvfp4_config& config, cuda::stream_ref stream) -> s4::core::result<quantization_metadata> {
if (input_fp32.size() * 4 / 8 != output_nvfp4.size()) { return s4::fail<quantization_metadata>( "output buffer size mismatch: expected {} bytes, got {}", input_fp32.size() / 2, output_nvfp4.size()); }
// Launch quantization kernel with explicit block size constexpr auto threads_per_block = 256; auto block_count = (input_fp32.size() + config.block_size - 1) / config.block_size;
nvfp4_quantize_kernel<<<block_count, threads_per_block, 0, stream>>>( input_fp32, output_nvfp4, config);
if (auto error = s4::cuda::check_last_error(); !error) { return s4::fail<quantization_metadata>("quantization kernel failed: {}", error.error().what()); }
return s4::ok(quantization_metadata{config.scale_factor, config.zero_point});}
} // namespace s4::quantizationMyelin Tactics Integration
TensorRT Myelin tactics for fused kernel generation:
namespace s4::tensorrt {
// DO: Wrap Myelin tactics in type-safe interfacesstruct myelin_tactic_config { std::string tactic_name; std::vector<size_t> input_shapes; data_type precision; // FP32, FP16, INT8, NVFP4 size_t workspace_size_bytes;};
// DO: Make tactic selection explicit and loggedauto select_myelin_tactic(const model_layer& layer, const execution_context& context) -> s4::core::result<myelin_tactic_config> {
auto available_tactics = query_available_tactics(layer, context);
if (available_tactics.empty()) { return s4::fail<myelin_tactic_config>( "no myelin tactics available for layer: {}", layer.name); }
// Select based on measured performance auto selected_tactic = profile_and_select_best(available_tactics, context);
s4::info("[s4] [tensorrt] [myelin] selected tactic '{}' for layer '{}' " "(workspace: {} MB, precision: {})", selected_tactic.tactic_name, layer.name, selected_tactic.workspace_size_bytes / (1024 * 1024), to_string(selected_tactic.precision));
return s4::ok(selected_tactic);}
} // namespace s4::tensorrtStream Management Patterns
namespace s4::cuda {
// DO: Use RAII for stream managementclass scoped_stream {public: scoped_stream() { if (auto result = create_stream(); !result) { s4::fatal("failed to create CUDA stream: {}", result.error().what()); } }
~scoped_stream() noexcept { if (stream_handle_) { cudaStreamDestroy(stream_handle_); } }
// Non-copyable, movable scoped_stream(const scoped_stream&) = delete; scoped_stream(scoped_stream&& other) noexcept : stream_handle_(std::exchange(other.stream_handle_, nullptr)) {}
auto get() const noexcept -> cudaStream_t { return stream_handle_; } auto ref() const noexcept -> cuda::stream_ref { return cuda::stream_ref{stream_handle_}; }
private: cudaStream_t stream_handle_ = nullptr;};
// DO: Use stream ordering for complex pipelinesauto execute_inference_pipeline(const model& model_instance, std::span<const float> input_data) -> s4::core::result<tensor_batch> {
scoped_stream preprocessing_stream; scoped_stream inference_stream; scoped_stream postprocessing_stream;
// Launch preprocessing (independent) preprocess_input_async(input_data, preprocessing_stream.ref());
// Synchronize and launch inference cudaStreamWaitEvent(inference_stream.get(), preprocessing_done_event); run_inference_async(model_instance, inference_stream.ref());
// Synchronize and launch postprocessing cudaStreamWaitEvent(postprocessing_stream.get(), inference_done_event); postprocess_output_async(postprocessing_stream.ref());
return s4::ok(/* result */);}
} // namespace s4::cudaDevice Memory Management
namespace s4::cuda {
// DO: Use typed wrappers for device memorytemplate<typename T>class device_buffer {public: explicit device_buffer(size_t element_count) : count_(element_count) { auto alloc_result = allocate_device_memory(element_count * sizeof(T)); if (!alloc_result) { s4::fatal("failed to allocate device memory: {}", alloc_result.error().what()); } data_ = static_cast<T*>(alloc_result.value()); }
~device_buffer() noexcept { if (data_) { cudaFree(data_); } }
// Non-copyable, movable device_buffer(const device_buffer&) = delete; device_buffer(device_buffer&& other) noexcept : data_(std::exchange(other.data_, nullptr)) , count_(std::exchange(other.count_, 0)) {}
auto data() noexcept -> T* { return data_; } auto data() const noexcept -> const T* { return data_; } auto size() const noexcept { return count_; } auto size_bytes() const noexcept { return count_ * sizeof(T); }
auto span() noexcept -> cuda::std::span<T> { return {data_, count_}; } auto span() const noexcept -> cuda::std::span<const T> { return {data_, count_}; }
private: T* data_ = nullptr; size_t count_ = 0;};
// DO: Make host-device transfers explicitauto copy_to_device_async(std::span<const float> host_data, device_buffer<float>& device_buffer, cuda::stream_ref stream) -> s4::core::status {
if (host_data.size() != device_buffer.size()) { return s4::fail("size mismatch: host {} elements, device {} elements", host_data.size(), device_buffer.size()); }
auto result = cudaMemcpyAsync(device_buffer.data(), host_data.data(), device_buffer.size_bytes(), cudaMemcpyHostToDevice, stream);
if (result != cudaSuccess) { return s4::fail_errno<void>("cudaMemcpyAsync failed"); }
return s4::ok();}
} // namespace s4::cudaError Handling for CUDA Operations
namespace s4::cuda {
// DO: Check every CUDA callauto check_cuda_error(cudaError_t error, std::string_view operation) -> s4::core::status { if (error != cudaSuccess) { return s4::fail("CUDA operation '{}' failed: {} (code: {})", operation, cudaGetErrorString(error), static_cast<int>(error)); } return s4::ok();}
// DO: Macro for inline error checking (use sparingly)#define S4_CUDA_CHECK(call) \ do { \ if (auto _error = (call); _error != cudaSuccess) { \ return s4::fail("CUDA call '" #call "' failed: {} at {}:{}", \ cudaGetErrorString(_error), __FILE__, __LINE__); \ } \ } while (0)
// DO: Check for asynchronous errors after kernel launchesauto check_last_error() -> s4::core::status { if (auto error = cudaGetLastError(); error != cudaSuccess) { return s4::fail("CUDA kernel launch failed: {}", cudaGetErrorString(error)); } return s4::ok();}
} // namespace s4::cudaKernel Launch Guidelines
// DO: Document kernel launch parametersnamespace s4::kernels {
struct launch_config { dim3 grid_dimensions; // Number of blocks dim3 block_dimensions; // Threads per block size_t shared_memory_bytes; // Dynamic shared memory cudaStream_t stream;};
// DO: Provide clear launch configuration calculatorsauto calculate_1d_launch_config(size_t total_elements, size_t threads_per_block = 256) -> launch_config {
auto block_count = (total_elements + threads_per_block - 1) / threads_per_block;
return launch_config{ .grid_dimensions = dim3(block_count), .block_dimensions = dim3(threads_per_block), .shared_memory_bytes = 0, .stream = nullptr };}
// DO: Log kernel launches in debug buildstemplate<typename KernelFunc, typename... Args>auto launch_kernel(const char* kernel_name, const launch_config& config, KernelFunc kernel, Args&&... args) -> s4::core::status {
#ifndef NDEBUG s4::debug("[s4] [cuda] [kernel] launching '{}' with grid({},{},{}) block({},{},{})", kernel_name, config.grid_dimensions.x, config.grid_dimensions.y, config.grid_dimensions.z, config.block_dimensions.x, config.block_dimensions.y, config.block_dimensions.z);#endif
kernel<<<config.grid_dimensions, config.block_dimensions, config.shared_memory_bytes, config.stream>>>( std::forward<Args>(args)...);
return check_last_error();}
} // namespace s4::kernelsAgent-Human Collaboration Patterns
The Comment Convention
This convention helps identify code provenance at a glance:
- Agents: Properly capitalized comments
- Humans: lowercase comments (straylight tradition)
// This is agent-generated code with standard patternsauto tokenizer = create_tokenizer(configuration);
// human intuition: special handling needed for rope positional encodingif (model_type == "llama") { apply_rope_encoding(tokenizer);}Agent-Specific Guidelines
Agents should:
- Use explicit types instead of
autoexcept where awkward - Fully qualify all names even when seemingly redundant
- Generate descriptive names that tell the complete story
- Add domain prefixes to prevent namespace collisions
// Agent style - explicit and unambiguousstd::vector<s4::inference::request> pending_requests = load_pending_requests();s4::core::result<s4::inference::batch_result> inference_result = execute_inference(pending_requests.front());
// Human style - can use auto where type is obviousauto pending_requests = load_pending_requests();auto inference_result = execute_inference(pending_requests.front());Critical Path Marking
Identify code requiring human review:
// CRITICAL PATH: Model quantization - human review requirednamespace s4::quantization { // Config parsing errors here corrupt inference results auto parse_quantization_config(std::string_view config_json) -> s4::core::result<quantization_config> { // Human-written parser with aggressive validation }}
// AUXILIARY: Metrics collection - agent generation acceptablenamespace s4::metrics { // Agent can generate this boilerplate}Working with Legacy APIs
When core APIs can’t be changed without breaking everything:
- Add better-named aliases alongside existing functions
- Use the new names in new code to model good patterns
- Document the preferred style in comments
- Gradually migrate during other refactoring
// Example: result.h evolution// Old API (keep for compatibility):auto ok(T value) -> result<T>;auto fail(string msg) -> result<T>;
// New aliases (use in new code):auto make_success(T value) -> result<T>;auto make_error(string message) -> result<T>;Testing Philosophy
The Five-Minute Rule
If you can’t understand what agent-generated code does in 5 minutes, regenerate it with better structure.
Property-Based Testing for Invariants
Agents generate thorough unit tests but miss semantic invariants:
// Agent-generated test - thorough but mechanicalTEST_CASE("tokenizer handles empty input") { auto tokenize_result = tokenize_input(""); REQUIRE(!tokenize_result.has_value());}
// Human-written property test - catches semantic violationsTEST_CASE("quantizer preserves tensor shape") { check_property([](const tensor_fp32& input_tensor) { auto quantized_tensor = quantize_to_nvfp4(input_tensor); if (!quantized_tensor) return true;
return quantized_tensor->shape == input_tensor.shape && quantized_tensor->rank == input_tensor.rank; });}Testing Error Handling
// Check error contentREQUIRE(!result.has_value());CHECK(!result.error().what().empty());CHECK_THAT(result.error().what(), ContainsSubstring("expected text"));
// Check error codesif (auto code = result.error().code()) { CHECK(code->value() == ENOENT);}
// Check formatted errors workauto error = s4::fail<int>("failed at position {}", 42);CHECK_THAT(error.error().what(), ContainsSubstring("failed at position 42"));Fuzz Testing for Parsers
// Add fuzz tests for any parser handling external inputFUZZ_TEST(configuration_parser, random_input) { auto result = parse_configuration(fuzz_input); // Should never crash, only return error if (result) { validate_configuration_invariants(*result); }}Debugging Patterns
The Grep Test
Every function should be globally unique and searchable:
# BAD: Too many resultsgrep -r "process(" . # 500 matchesgrep -r "handler::" . # 200 matches
# GOOD: Finds exactly what you needgrep -r "process_tensor_batch(" . # 3 relevant matchesgrep -r "quantization_handler::" . # 10 specific matchesState Machine Clarity
Make states explicit for debugging:
// BAD: Implicit state machines become agent debugging nightmaresif (flags & 0x04 && !error_flag && counter > threshold) { // What state is this?}
// GOOD: Self-documenting statesenum class connection_state { disconnected, connecting, authenticated, active, draining};
if (current_state == connection_state::authenticated && error_count == 0 && retry_counter > max_retries) { transition_to_state(connection_state::draining);}Performance Guidelines
- Start with clear, simple code - The compiler optimizes clarity
- Measure with production flags:
-O3 -march=native - Small types belong in registers - pass by value
- Profile before optimizing - Data always surprises
// Let the compiler workfor (const auto& request : pending_requests) { process_inference_request(request);}
// Not this clevernessfor (auto idx = 0; idx < pending_requests.size(); idx += 4) { // Unrolled loop that's probably slower}Constexpr Usage
// DO: Use constexpr for compile-time constantsconstexpr size_t max_batch_size = 1024;constexpr std::string_view model_architecture = "transformer";
// DO: Mark functions constexpr when possibleconstexpr auto calculate_tensor_size(uint64_t batch, uint64_t seq_len, uint64_t hidden_dim) -> uint64_t { return batch * seq_len * hidden_dim;}
// DON'T: Force constexpr when it complicates implementationconstexpr auto complex_quantization() { // Requires contortions // ...}Logging
Hierarchical tagging for structured logs:
s4::info("[s4] [inference] [engine] [batch] executing batch id={} device={}", batch_id, device_id);s4::error("[s4] [inference] [engine] [error] inference failed: {}", error_description);Format: [project] [system] [component] [detail] message
Configuration Philosophy
Parse Everything Up Front
// Parse and validate entire config at startupauto load_system_configuration(std::string_view config_path) -> s4::core::result<system_configuration> {
auto file_content = s4::core::fs::read_file_to_string(config_path); if (!file_content) { s4::fatal("Cannot read configuration file: {}", config_path); }
auto parsed_config = parse_toml_configuration(file_content.value()); if (!parsed_config) { s4::fatal("Invalid configuration: {}", parsed_config.error().what()); }
auto validation_result = validate_configuration(parsed_config.value()); if (!validation_result) { s4::fatal("Configuration validation failed: {}", validation_result.error().what()); }
return s4::core::ok(parsed_config.value());}Configuration Errors Are Fatal
If configuration is wrong, nothing else can be trusted:
if (!model_config.has_valid_weights_path()) { s4::fatal("Model configuration missing weights path");}
if (inference_config.max_batch_size <= 0) { s4::fatal("Invalid max_batch_size: {}", inference_config.max_batch_size);}API Evolution Guidelines
When core APIs need updates:
- Start with backwards compatibility - Keep old functions working
- Fix fundamental issues - Like string lifetime problems
- Add better alternatives - New overloads following style guide
- Constexpr where reasonable - Don’t force it if it complicates
- Document breaking changes - Even minor ones like
error_code()→code()
Incremental Improvement Strategy
For widely-used modules like s4::core::result:
- Never break existing code - Aliases are cheap
- Model better patterns in new functions
- Update documentation to prefer new patterns
- Consider
[[deprecated]]only after wide adoption
Anti-Patterns to Avoid
The Abbreviation Cascade
// Starts innocent...auto cfg = load_config();
// Spreads like a virus...auto conn = create_conn(cfg);auto mgr = conn_mgr(conn);auto proc = mgr.get_proc();
// Ends in debugging hellif (!proc.is_valid()) { // What is proc again? // ...}Context-Dependent Names
// BAD: "decoder" means different things in different placesnamespace tokenizer { class decoder; // Decodes tokens}namespace model { class decoder; // Transformer decoder layer}
// GOOD: Names carry their domainnamespace tokenizer { class token_decoder;}namespace model { class transformer_decoder_layer;}Implicit State Machines
// BAD: State spread across booleansbool is_connected;bool is_authenticated;bool is_active;bool has_error;
// GOOD: Explicit stateenum class session_state { disconnected, connected_unauthenticated, authenticated_inactive, active, error_recovery};Summary
In an agent-heavy codebase:
- Every name must be globally unambiguous
- Every abbreviation creates exponential confusion
- Every implicit assumption becomes a debugging nightmare
- Every configuration error multiplies across the system
Write code as if 100 agents will be pattern-matching against it tomorrow, and a tired human will be debugging it at 3am next month. Because both will happen.
The Unix authors optimized for scarce memory. We optimize for scarce human comprehension. In 1970, every character cost bytes. In 2025, every ambiguity costs hours.
Required Reading/Watching
Performance
- CppCon 2017: Carl Cook “When a Microsecond Is an Eternity”
- Cliff Click: “A Lock-Free Hash Table”
- Andrei Alexandrescu: “Optimization Tips”
Modern C++
Living List of Great Code
Tier 1 (Perfection - Study every line)
- simdjson - SIMD JSON parsing, exemplary modern C++
- Abseil - Google’s foundation library, production-hardened
- fmt - The formatting library that became std::format
Tier 2 (Domain Excellence - Best-in-class for their problem space)
- DuckDB - Analytical database, zero dependencies, clean architecture
- RocksDB - LSM storage engine, battle-tested at scale
- DPDK - Kernel bypass networking, when microseconds matter
- ClickHouse - Columnar database, SIMD everywhere
Tier 3 (Specific Excellence - Outstanding implementations of focused problems)
- parallel-hashmap - Swiss tables with parallel access
- concurrentqueue - Lock-free queue that actually works
- mimalloc - Microsoft’s superb allocator
- liburing - io_uring done right (see kernel code too)
Study Specific Files/Techniques
- Facebook’s F14 - Vector instructions in hash tables
- Google’s SwissTable - The hash table design that conquered all
- Lemire’s streamvbyte - SIMD integer compression
- Aeron - Reliable UDP messaging, mechanical sympathy exemplar
Controversial but Instructive
- Seastar - Futures done differently, polarizing but educational
- EASTL - EA’s STL replacement, different tradeoffs
- Boost.Asio - The async model that influenced networking TS
Required Reading (Papers/Docs)
- What Every Programmer Should Know About Memory
- Drepper’s classic
- Can Seqlocks Get Along With Programming Language Memory Models?
- Hans Boehm on the hard stuff
- There is No Fork
- Microsoft Research on process creation
What Makes Code “Great” for This List
- Clarity despite complexity - Solving hard problems with readable code
- Performance without compromise - Fast but not at the expense of correctness
- Teaching value - You become a better programmer by reading it
- Battle-tested - Used in production at serious scale
- Influential - Changed how we think about the problem
What Doesn’t Belong
- Clever for cleverness’ sake
- Template metaprogramming gymnastics without purpose
- “Look how few lines!” code golf
- Abandoned experiments (unless historically important)