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Abstract

Deep learning theory analyzes neural networks as continuous functions optimized over R™.
This abstraction, while mathematically convenient, obscures the actual computation. Every
operation occurs on a discrete, non-uniform lattice determined by floating-point representation.
We argue this is not an approximation to be corrected but the actual object of study. Different
precision stacks define different optimization problems with different dynamics, not nested
approximations to a “true” real-valued surface. We model practical mixed-precision pipelines
and show that even when lower-precision values embed in higher-precision formats, the realized
loss and training dynamics differ. Continuous analysis is valid as perturbation theory when
rounding events are infrequent. When they are not, the lattice dominates.

Scope of claims. Proven/constructed: Piecewise-constant cell structure of £,; existence of
non-monotonicity across non-nested formats (fp16 vs bf16). Observed: Precision-swap irreversibility;
SDPA collapse with residual recovery; non-monotonic SNR, across formats. Conjectured: Task-
dependent precision optima as a general phenomenon.

1 The Standard Framework

Assumption 1 (Universal). Neural network training minimizes a loss function L : R™ — R via
gradient descent on a continuous manifold.

This assumption underlies nearly all theoretical work: convergence proofs [I], generalization
bounds [2], loss landscape analysis [3], implicit bias theorems [4]. It is mathematically convenient
but physically unrealized.

No computer has ever performed a computation in R.

2 The Discrete Frame

Floating-point arithmetic operates on a discrete set. IEEE 754 binary32 [5] has approximately
4.3 x 107 distinct bit patterns. For normalized numbers, spacing scales with |z| (density oc 1/]x|);
in the subnormal regime, spacing is uniform.
A neural network forward pass is a composition of thousands of such operations. The function
actually computed is:
f:A" = A

where A is the floating-point lattice. This is not f : R™ — R plus noise. It is a different function
defined on a different domain.



2.1 Precision Stacks

Real training pipelines use mixed precision [6]. We define a precision stack:
P = (Awa Aa; A97 Facc; I‘optv R7 S)

for weights, activations, gradients, matmul accumulators, optimizer state, rounding policy R, and
scaling policy S. Here R encodes rounding mode (RN-even, stochastic), saturation behavior, and
FTZ/DAZ status. S encodes scaling granularity (per-tensor/per-channel/per-block) and group size.
Different (R,S) induce different cell geometries even at fixed bitwidth.

The realized model depends on where quantizers Q5 are inserted:

e Pre-op: Inputs to each primitive are in their respective A
e Accumulation: GEMMs accumulate in I'yc. (often fp32), then round to the branch’s A
e Optimizer: Updates computed in I'opt (often fp32), optionally projected to A,

Even when A, C I'opt, the dynamics differ across stacks because rounding events, saturation,
and accumulator overflow occur at different points—defining different cell boundaries in parameter
space.

Observation 1. Different precision formats define different optimization problems.

For IEEE binary formats with the same radix, lower-precision values embed in higher-precision:
every fp8 value is exactly representable in fp32. However:

e Non-nested pairs exist: fpl6 and bfl6 are not nested—each contains values the other
cannot represent (mantissa/exponent trade-off).

e Dynamics differ even when nested: Training in fp16 vs fp32 produces different rounding
events, different gradient quantization, different overflow behavior [7].

e The realized loss differs: £, () is piecewise constant over cells induced by rounding
thresholds. Different A means different cell boundaries, different critical points, potentially
different minima.

Format Exp bits Mant bits Nested in fp327?

fp32 8 23 —
fpl6 5 10 Yes

bf16 8 7 Yes

fp8 (e4m3) 4 3 Yes

fp8 (ebm?2) 5 2 Yes

int8 - 8 No (uniform vs log)

fpl6 ¢ bfl6 and bfl6 ¢ fpl6

The key insight: even when A; C Ag, training on A; is not “Ag with noise.” It is optimization
of a different piecewise-constant function with different dynamics.



3 Formal Core

Definition 1 (Quantizer). A quantizer for lattice A C R is a map Qp : R — A (typically
round-to-nearest-even with saturation). Extend elementwise to tensors. For analysis on R™, define

L5(0) = Lp(Qn,,(9)).

Definition 2 (Realized Loss). For a network with primitives {¢;}, the realized loss at precision
stack P replaces each ¢ with appropriate Qp o ¢ o Qp insertions. The realized loss Lp : Ajyy — T'gec
is a function on the weight lattice, not R™. All analysis assumes a deployment distribution D with
bounded dynamic range.

Proposition 1 (Piecewise Constant). With deterministic rounding and fized activation/branch
regimes, Eg)(Q) is locally constant on a locally finite stratified partition of R™. The boundaries
are finite unions of C' hypersurfaces given by preimages of quantizer midpoints and primitive
kinks/saturation thresholds. On any compact set K C R", only finitely many strata intersect K. On
any stratum, all realized quantized tensors are constant; hence Egp is constant.

Proof sketch. (1) For fixed rounding decisions, each Q4 outputs a constant; compositions with
smooth ¢ yield smooth functions quantized back to A. (2) Rounding decisions change when a
preimage crosses a midpoint x = ¢ + %ULP(C). With nonlinear ¢, these preimages are generally
curved hypersurfaces, not hyperplanes. (3) Finitely many thresholds per finite op graph induce a
locally finite stratification (finite on any compact set). (4) On any stratum, realized tensors and
thus Eg, are constant. (5) Boundaries are measure zero. [J

Note on ULP: ULP depends on the exponent; boundaries jump at powers of two. Many
accelerators enable flush-to-zero (FTZ) and denormals-are-zero (DAZ), which change cell geometry
and can induce large, structured plateaus near zero.

Corollary 1 (Stagnation). If |A6;| < 3ULP;(6;) for alli and no intermediate activation crosses

a quantizer or nonlinearity threshold under the induced change, then .Cg)(GtH) = Eg)(et) despite
VL] > 0.

This explains training plateaus: the optimizer computes updates that don’t escape the current
stratum. The loss surface is not smooth. It is a staircase. Gradient descent on a staircase either
crosses a step or stands still.

3.1 Surrogate Gradients

If /Jgp is piecewise constant, its gradient is zero almost everywhere. How does training make progress?
Answer: Autodiff through casts either omits the rounding nonlinearity (treating casts as
identity for backprop) or uses straight-through estimators (STE) [17]. Training follows a surrogate
gradient of a smoothed proxy Lp , rather than Vﬁgj.
This reconciles observed progress with a staircase objective:

e STE: Gradient flows through as if quantization were identity

e Stochastic rounding: Randomizes thresholds, optimizing an explicit smoothing of ﬁgD by
convolving with the rounding kernel

o QAT": Learns scales that reshape cell geometry during training

Continuous analysis is a good perturbative surrogate in the low boundary-crossing regime,
where rounding decisions are stable over many steps and L correlates with Egp on visited strata.



Proposition 2 (Non-Monotonicity Existence). For non-nested pairs (A1, A2) such as (fp16, bf16),
there exist tasks where
in L, (0) < min Ly, (0
Juin A, () Juin A2(0)

and other tasks where the inequality reverses.

Proof (constructive). Consider £(x) = (z — a)? with « placed within half-ULP of a representable
point in Ay but not in As. The minimizer snaps to different grid points, yielding different losses.
Swap a’s position to reverse the inequality. [

Proposition 3 (No Total Order). For any two precision stacks Py, P,—including cases where
Ay C Ay—there exist tasks T, Ty such that P, achieves lower loss on T1 and Py achieves lower loss
on Ts.

Even nested formats can swap ordering because the dynamics (saturation, accumulation, cell
boundaries) differ.

L Efplﬁ Lyr16
0 - o —L= 0
L:R—>R fpl6 bf16
(standard) é%p16 Obe16 7 e

Figure 1: The continuous parabola (left) is the standard theoretical abstraction. In practice, only
discrete surfaces exist, with different cell boundaries and different minima per precision. fpl6 and
bf16 are non-nested: each contains values the other cannot represent. Minima do not merge under
A — B — A precision casting.

4 The Fossil Record

Architectural innovations correlate with precision stack transitions:

Year Precision Adaptation

2012 fp32 GPU ReLU (avoids exp overflow)
2015 fp32 GPU BatchNorm (range control)
2016 fp32 GPU ResNet (SNR preservation)
2017 fp32 GPU  1/+/d}, LayerNorm

20184 Dbfl6 TPU Same constants reinforced
2019 fp16 GPU GELU (smoother gradients)
2022 bfl6 GPU RMSNorm, SwiGLU

2024 fp8 GPU  Smooth-SwiGLU [16]

We do not claim these choices were made consciously for numerical reasons. We claim they
survived because they correlate with selection pressures that stabilize ranges and signal-to-noise
ratios on the precision stacks that dominated each era.



ReLU replaced sigmoid when fp32 made derivative discontinuity acceptable. SwiGLU emerged on
bf16 but required modification for fp8 because it produces outlier activations exceeding representable
range.

We are not doing architecture design. We are doing archaeology.

4.1 The Magic Numbers as Range Control

Reframe the Transformer constants as lattice-specific range controls:

e 1/y/dy: Keeps logits in representable range after cast back to A,. Reduces tendency toward
near-one-hot attention under fixed learning rate. On R, it normalizes variance. On the lattice,
it maintains a healthy boundary-crossing rate.

e d; = 64: One point in a precision-dependent band {32, 64,96,128}. Modern LLMs explore
the full range.

® dyf ~ 4dyodei: Boundary-crossing rate stays healthy. Gated FFNs shift this to ~ 3.5-4.7x
effective expansion.

e 8 heads at 64 dims: Product of precision-safe head size and practical parallelism.

On a different lattice, different configurations survive.

5 Observations

We measured SNR (signal-to-noise ratio vs. fp32 reference) across 1,444 layer-precision pairs in
three model families under dynamic activation quantization.

5.1 SDPA Collapse with Residual Recovery
Scaled dot-product attention shows dramatic SNR collapse at NVFP4:

Model SDPA min (dB) Residual out (dB) Recovery
Qwen2.5-1.5B —6.33 22.1 +28 dB
FLUX.1-schnell 1.17 28.4 +27 dB
BERT-base 8.88 31.2 +22 dB

Qwen shows negative SNR—mnoise exceeds signal. Yet the model produces coherent output. The
residual stream acts as a carrier wave; when it adds to the degraded attention output, coherent
detection recovers the signal.

SNR combination (linear domain): For residual r and attention a paths with quantization
noises &, €q:

S
Ny + Ny + 2 cov(ep, eq)

SNRcombined =

With uncorrelated noise (cov ~ 0) and coherent signal addition, the combined SNR exceeds either
branch. Convert to dB only after linear combination. This is standard coherent detection from RF
engineering [10]. Verify empirically: report corr(ysp, Yga — Ysp) and corr(yep, Yqr — Ygp) to justify
the uncorrelated noise assumption.



Definition (NVFP4): A 4-bit floating-point format deployed with block-wise microscaling
(e.g., group size 32). Each block shares a scale factor, improving dynamic-range utilization relative
to per-tensor scaling. Verify exponent/mantissa layout and group size against vendor documentation;
our results reflect the full stack (A,S) rather than bitwidth alone.

5.2 Non-Monotonicity
FLUX.1-schnell mean layer SNR:

e Float8: 6.2 dB

e NVFP4: 404 dB

Four bits outperform eight bits. This reversal is inconsistent with “lower precision = more noise.”

It is consistent with different lattices having different geometry—block-wise microscaling in NVFP4
(group size 32) provides better dynamic range management than per-tensor Float8 scaling for this
architecture.

Control note: This comparison requires controlling for scaling granularity (per-tensor vs
per-channel vs block), clipping policy, and calibration window. The “4 ; 8 bits” result reflects the
full precision stack, not bit count alone.

6 The Four Consequences

The Lattice

VARN

Cells Fossils Hallway Crossing
Piecewise Constants Constraints Progress
constant are selected help requires fB¢ > 0

Figure 2: Four consequences of the Lattice Hypothesis: loss is piecewise constant on cells, archi-
tectural constants are precision-selected fossils, constraints improve signal-to-branching ratio, and
progress requires boundary crossings.

7 Experimental Program

Four experiments to test the hypothesis:

7.1 Experiment 1: Learned Temperature

Replace 1/+/d, with learned per-head 7,. Initialize to \/dg. Train identical architectures on fp8-e4m3,
fp8-e5m?2, fpl6, bf16, fp32.

Prediction: 75, converges to different values across precisions. Lower precision — higher 7
(wider attention to compensate for quantization noise). Per-head variance is diagnostic.



7.2 Experiment 2: Head Dimension Sweep

Sweep dj, € {32,48,64,80,96,128} at each precision, holding compute roughly fixed (adjust head
count with dyodel fixed). Log pre/post-scale logit std, softmax entropy, cast change rate.
Prediction: Optimal dj shifts with precision. fp8 prefers smaller dj; fp32 tolerates larger.

7.3 Experiment 3: FFN Width Sweep

Sweep expansion factor € {2,3,4,6,8} at each precision. Log boundary-crossing rate and ULP-
normalized update histograms.
Prediction: Optimal width decreases with precision. The 4x factor is fp32/bf16-specific.

7.4 Experiment 4: Architecture Search

Run differentiable architecture search with precision as environmental variable. Let search discover
scaling, head dimension, FFN ratio, normalization.

Prediction: Different precisions yield different architectures. Search rediscovers 2017 constants
on bf16, different constants on fp8.

8 Falsifiable Predictions

1. Precision-order non-monotonicity. There exist workloads where bfl6 trains stably and
fp16 diverges, and vice versa, at matched throughput and accumulator precision.

2. Precision-stack hysteresis. Swapping precision mid-training (P4 — Pp for k steps, then
Pp — Pa) does not recover the original loss trajectory.

3. Boundary-crossing dynamics. Training progress correlates with the boundary-crossing
rate f;: the fraction of parameters where |A6;| > %ULPZ-. Plateaus coincide with near-zero
crossing rates despite nonzero gradients.

4. Stochastic rounding as exploration. Enabling unbiased stochastic rounding [8, 9] increases
boundary-crossing rates and improves optima in low-bit training.

8.1 Proposed Measurements
e Weight boundary-cross rate 3;: Fraction of parameters where |A¢;| > $ULP;(6;)

e Effective boundary-cross rate ¢: Counts rounding-decision flips anywhere in the forward
graph, not just weights:
M

1
off _ i > 1{cellidy (6;41) # cellidy, (6;)}

m=1

where cell_id,;, is the vector of rounding decisions for M probed tensors. This aligns the metric
with the theory.

¢ ULP-normalized step size: Histogram of |A6;|/ULP;(0;); progress requires mass above 0.5
e Saturation rate: Fraction of activations/weights hitting max finite value

e Cell-ID churn: Hamming distance of rounding decisions per step (use bit-pattern comparison
via view as int32/64 for robustness to denormals)



9 Implications

For architecture search: Searches on fp32 find fp32-optimal architectures. Deploying on fp8
requires re-search.

For scaling laws: Current scaling laws are curves for specific precision stacks. Different lattices,
different exponents.

For quantization: “Degradation” is not approximation error. It is a different objective function.
Post-training quantization changes the problem; the solution may no longer be optimal.

For LoRA: The rank constraint is a hallway. It works not despite limiting expressivity but
because it limits wrong moves. The optimal rank depends on the precision stack.

For hardware design: The architecture and precision are not separable. Accelerators designed
for “Transformer inference” assume constants that may not transfer.

10 Likely Objections

“But continuous analysis works!” Agreed—when rounding events are infrequent and saturation
rare. We formalize that regime as “low boundary-cross rate,” where £ is a good surrogate for Lp.
The question is when this approximation breaks down.

“Nested sets mean approximation.” Even with A C I, the realized objective and dynamics
differ because rounding thresholds, accumulator precision, and saturation define different cell
decompositions. Optimization traces are not perturbations of each other when boundary events
dominate.

“This is just numerical analysis.” We elevate it from error analysis to problem definition:
the objective being optimized changes with the precision stack. The right question is not “how
much error does low precision introduce?” but “which lattice has good solutions for this task?”

11 Instrumentation

Key diagnostics for any experiment:
e Boundary-crossing rate 3;: Fraction of weight updates > % ULP
e Cast change rate: Fraction of values that change when cast between formats
e Softmax entropy: Low entropy = saturated attention
e ULP-normalized updates: Histogram of |Af|/ULP(0)
e Per-op dtype logging: What precision at each operation?

If By — 0, training stagnates regardless of gradient magnitude. If cast change rate is high at a
specific layer, that layer is precision-sensitive.

11.1 Threats to Validity

1. Backend specifics: Operator dtypes, fused kernels, and reduction orders vary by frame-
work /version; always log per-op dtypes.

2. Accumulator exceptions: Some kernels may not use fp32 accumulators; confirm via kernel
dumps.



3. Dynamic scaling: Per-tensor/per-channel scales, loss scaling, and stochastic rounding alter
cell geometry.

4. Seed/optimizer effects: Gauge selection varies; compare gauge-invariant vs gauge-dependent
metrics explicitly.

5. Compute matching: When sweeping dj, or heads, keep FLOPs/activation-memory approxi-
mately fixed.
11.2 Reproducibility Checklist

Report: hardware, driver, framework commit, kernels enabled; seeds; tokenizer/data hash; batch
size, LR schedule, gradient clipping; per-op dtypes (inputs, accumulators, outputs); stochastic
rounding status; loss-scaling policy; checkpoint/optimizer state precision.

12 Conclusion: Not Even Long

“Not Even Wrong” describes claims that cannot be falsified. We propose “Not Even Long” for
derivations that do not exist.

The fundamental constants of the Transformer—dj, = 64, dyy = 4dmodel; 1/ \/dj—are fossils.
They were selected on fp32/bf16 stacks in 2017-2020. They propagated because they worked. They
were rationalized post-hoc.

The research program is clear:

1. Measure boundary-crossing rates across precision stacks
2. Learn the “constants” and watch them vary

3. Run architecture search per precision

4. Build theory for hallway quality

The proof is not a theorem. The proof is an experiment.

Deep learning theory is perturbation theory around a continuous abstraction.
The lattice is the substrate. The rest is perturbation theory.

A Code

A.1 Core Utilities

import torch, math
import torch.nn as nn
import torch.nn.functional as F

def ulp_exact(x):
"""Exact ULP using nextafter. Handles subnormals."""
inf = torch.tensor(float(’inf’), dtype=x.dtype, device=x.device)
ninf = torch.tensor(float(’-inf’), dtype=x.dtype, device=x.device)
Xp = torch.nextafter(x, inf)



def

def

def

xm = torch.nextafter(x, ninf)

return torch.minimum((xp - x).abs(), (x - xm).abs())

# Note: If FTZ/DAZ enabled, ULP is effectively infinite
# below smallest normal. Check torch.finfo(x.dtype).tiny.

bitwise_equal(a, b):

"""Elementwise bit-identity; robust to NaNs."""
assert a.dtype == b.dtype and a.shape == b.shape
if a.dtype == torch.float32:

return a.view(torch.int32) == b.view(torch.int32)
if a.dtype in (torch.floatl16, torch.bfloatl6):
return a.view(torch.int16) == b.view(torch.int16)

raise NotImplementedError (f"Unsupported dtype {a.dtypel}")

boundary_crossing_rate(theta, delta):
"""Fraction of updates exceeding 0.5 ULP."""
return (delta.abs() >= 0.5%ulp_exact(theta)).float() .mean()

cast_change_rate(x, from_dtype, to_dtype):

"""Fraction of values that change when cast (bitwise)."""
x_from = x.to(from_dtype)

x_to = x_from.to(to_dtype) .to(from_dtype)

return (“bitwise_equal(x_from, x_to)).float() .mean()

A.2 Boundary-Crossing Logger

class Crossinglogger:

"""Track boundary-crossing rates per parameter."""
def __init__(self, model):
self.prev = {n: p.detach().clone()
for n,p in model.named_parameters()}

def step(self, model):

rates = {}

for n, p in model.named_parameters():
if not p.requires_grad:

continue

delta = p.detach() - self.prev[n]
bcr = (delta.abs() >= 0.5%ulp_exact(self.prev[n]))
rates[n] = bcr.float() .mean().item()
self.prev[n].copy_(p.detach())

return rates

A.3 Per-Op Dtype Tracer

def

attach_dtype_tracer(module: nn.Module):
"""Log input/output dtypes for all layers."""
def hook(mod, inputs, output):

10



def dtype_of (x):
return getattr(x, ’dtype’, None)
ins = [dtype_of(t) for t in inputs
if torch.is_tensor(t)]
outs = ([dtype_of (output)]
if torch.is_tensor (output)
else [dtype_of(t) for t in output
if torch.is_tensor(t)])
print(f"{mod.__class__.__name__}: "
f"in={ins} out={outs}")
for m in module.modules():
if any(hasattr(m, a) for a in [’weight’,’bias’]):
m.register_forward_hook(hook)

A.4 Learned Temperature Attention

class LearnedTemperatureAttention(nn.Module):

"""Per-head learned temperature for Exp 1."""
def __init__(self, d_model, n_heads):
super () .__init__Q
self.n_heads = n_heads
self.d_k = d_model // n_heads
init = math.log(self.d_k ** 0.5)
self.log_tau = nn.Parameter(
torch.full((n_heads,), init))

def forward(self, Q, K, V):
tau = self.log_tau.exp().view(1l,-1,1,1)
scores = Q @ K.transpose(-2,-1) / tau
scores = scores - scores.max(-1,keepdim=True) [0]
return F.softmax(scores, -1) @ V

@property
def tau(self):
return self.log_tau.exp().detach().cpu().tolist()
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