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Abstract

We propose that neural network precision requirements are determined by information con-
tent, not numerical convention. The natural precision of a tensor is the minimum bits required
to preserve task-relevant information; additional precision has no Landauer lower bound for re-
versible reparameterizations but is computationally wasteful on real hardware. We formalize this
using Landauer’s principle: only bit erasure has irreducible thermodynamic cost. Representation
changes that preserve information—bijections on the realized support—are epilogues: gauge
transformations with zero Landauer lower bound. This framework explains why quantization
“works”: it fails when it erases task-relevant bits, and incurs no information-theoretic penalty
when it doesn’t. We show that successful quantization methods (GPTQ, AWQ, SmoothQuant)
implicitly satisfy the injectivity condition by transforming tensors until their realized support
fits within the codebook structure.

1 The Approximation-Error Frame
Standard quantization theory treats precision reduction as approximation:
T =Q(x) ~x witherror e =2 — &

This frames quantization as a tradeoff: fewer bits means more error, and error degrades perfor-
mance. The goal is to minimize ||€|| subject to bit budget constraints.
This view is incomplete. It treats all bits as equal and all errors as harmful. Neither is true.

2 Information-Theoretic Reframing

Not all bits carry task-relevant information. Consider:
e A weight tensor with values in {—1,0,+1} stored in fp32
e A 16-bit activation whose bottom 8 bits are noise
e An embedding table with 50,000 entries stored in fp64

In each case, the stored precision exceeds the information content. The excess bits have no
Landauer lower bound for erasure—mno task-relevant information is lost. (Note: while logical bi-
jections have zero Landauer cost, practical hardware still dissipates energy for memory movement
and switching; we distinguish the information-theoretic lower bound from implementation costs.)



Definition 1 (Realized Support). For a tensor X observed during inference/training, the realized
support suppp(X) is the set of values actually taken by X under deployment distribution D. This
is finite for any finite computation. All probabilities and supports throughout are with respect to D.

Definition 2 (Task-Aware Equivalence). Let G be the downstream subnetwork (the remainder of
the model after X ). For tolerance T and metric £, define z ~, 2" if {(G(z),G(2")) < 7. Two values
are task-equivalent if collapsing them does not change downstream behavior beyond tolerance.

Definition 3 (Natural Precision). The natural precision of tensor X is:
b*(X) = [logy |supp(X)]]
The minimum bits to uniquely identify each realized value. When task-equivalence is considered:
b7 (X) = [logy [supp(X)/~-|]
The minimum bits to distinguish task-inequivalent values.

Proposition 1. Any representation change that is a bijection on supp(X) preserves all information
about X.

Proof. A bijection f : supp(X) — supp(X) is invertible. Given f(x), we can recover z =
f71(f(x)) exactly. No information is lost. OJ

3 Epilogues as Gauge Transformations

Definition 4 (Epilogue). An epilogue is a representation change E : X — Y that is:
1. Bijective on the realized support: E|g,,x) is one-to-one
2. Potentially non-bijective on the full domain: E may collapse unrealized values

Epilogues are gauge transformations: they change the representation without changing the
information content. Like coordinate changes in physics, they affect how we describe the system
but not the system itself.

fp32
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Figure 1: An epilogue is bijective on the realized support (blue) but may collapse unrealized values
(gray). Only the bijection matters for information preservation.



4 Landauer’s Principle

Landauer’s principle [I] states that erasing one bit of information requires dissipating at least k7" 1n 2
of energy, where k is Boltzmann’s constant and T' is temperature.

Theorem 1 (Landauer Lower Bound). The minimum thermodynamic cost of a computation is
bounded below by the bits irreversibly erased.

Reversible operations—bijections—have no Landauer lower bound. They can in principle
be performed without the irreducible dissipation that accompanies erasure. (Practical implementa-
tions still incur switching and memory-movement costs, but these are engineering constraints, not
fundamental limits.)

Applied to quantization:

e If quantization is bijective on supp(X): zero information erased, no Landauer lower bound

e If quantization collapses distinct realized values: information erased, irreducible thermody-
namic cost

The question “how much precision do we need?” becomes: “how many bits are in the realized
support?”

5 The Codebook Injectivity Condition

Let d(-, ) denote the metric defining nearest-neighbor assignment (typically Lo per-channel or per-
tensor). This induces a Voronoi partition: each codebook entry ¢ € C' owns the region of inputs
closer to ¢ than to any other entry.

Definition 5 (Codebook). A codebook C for quantization is a finite set of reconstruction values.
Quantization maps each input to its nearest codebook entry under metric d.

Proposition 2 (Injectivity Condition). Quantization with codebook C' is an epilogue if and only if
no two values in supp(X) map to the same codebook entry.

Proof. 1If distinct 1,22 € supp(X) both map to ¢ € C, then Q(z1) = Q(x2) = ¢, violating
injectivity. Conversely, if all realized values map to distinct codebook entries, Q|supp(x) 18 injective
and hence bijective onto its image. [J

Corollary 1. Quantization is information-preserving if and only if |C| > |supp(X)| and the
Voronoi cells of C each contain at most one realized value.

Proposition 3 (Relaxed Injectivity). Strict injectivity is sufficient but not necessary. Quantization
preserves task-relevant information at tolerance (T,9) if:

1. Probabilistic: Pr[Q(X1) = Q(X2), X1 # Xo] < 0 under deployment distribution, or
2. Task-aware: () merges only pairs (z1, z2) with £(G(z1),G(22)) < T

The strict condition (|C| > [suppp(X)|) is the idealization. In practice, successful methods
achieve the relaxed conditions by transforming tensors until collisions are rare or task-irrelevant.

Definition 6 (Voronoi Margin). For z € suppp(X) with nearest codeword c, the margin is y(x) =
ming.[d(x, ') —d(x,c)]. If v(x) > n for all realized x, injectivity survives perturbations ||d|| < n/2.
Methods that increase margins are robust to distribution shift and calibration noise.



Key clarification: The injectivity condition is not assumed to hold a priori for raw tensors—it
typically does not. Rather, we argue that successful quantization methods work precisely
because they transform tensors until the condition holds. The methods below shrink,
reshape, or factorize tensors until their realized support fits within the codebook’s Voronoi structure
with adequate margin.

6 Explaining Successful Quantization

Modern quantization methods implicitly achieve the injectivity condition through various transfor-
mations:

6.1 SmoothQuant

Xiao et al. [3] observe that activation outliers break quantization. Their fix: migrate magnitude
from activations to weights via a diagonal scaling matrix.

Information-theoretic interpretation: Outliers expand the realized support beyond what
8 bits can biject. Smoothing shrinks the support back into the codebook’s Voronoi structure. The
transformation is an epilogue—bijective on the (smoothed) support.

6.2 AWAQ: Activation-Aware Weight Quantization

Lin et al. [4] protect “salient” weights—those with high activation magnitude—from quantization
error.

Information-theoretic interpretation: Salient weights have larger effective support (more
distinct activationxweight products). AWQ allocates precision to high-information directions, re-
ducing the risk of erasing task-relevant distinctions.

6.3 GPTQ

Frantar et al. [5] use Hessian information to guide quantization, minimizing output perturbation.

Information-theoretic interpretation: The Hessian identifies which weight perturbations
affect the output. Weights in flat Hessian directions have low information content (many weight
values produce the same output). GPTQ preferentially quantizes low-information weights—implicit
Landauer minimization.

6.4 SVDQuant and Nunchaku

Li et al. [6] absorb outliers into low-rank components, enabling 4-bit quantization of the residual.

Information-theoretic interpretation: Outliers are low-rank structure—a few directions
carry most of the range. Factoring them out reduces the residual’s support to fit in 4-bit codebooks
while preserving the full information in the low-rank factors.

7 The Residual Stream as Carrier

In transformers, the residual stream enables aggressive attention quantization:
Information-theoretic interpretation: The residual stream’s information passes through
without quantization (or at higher precision). The attention branch adds a delta whose information
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Figure 2: The residual stream carries information through the high-precision path. Attention can
collapse to 1.2 dB SNR; the sum recovers to 28 dB. The residual is the carrier wave; attention is
the modulation.

content may be lower than its precision suggests. The architecture separates high-information
(residual) from low-information (delta) paths.

This is coherent detection from RF engineering [7]: the carrier (residual) provides a reference
against which the modulation (attention) is decoded. The sum recovers information that neither
branch alone contains.

SNR measurement note: The dB values shown are illustrative. When combining signals,
SNR arithmetic must be performed in the linear (power) domain: SNRout = Piignal,combined / Proise,combined
then converted to dB. The +27 dB recovery occurs because signal adds coherently while uncorre-
lated quantization noise adds in quadrature.

Measurement protocol: For a layer with residual path R and attention path A:

1. Compute FP32 baseline output yg,; signal power S = |Jyg,||3

2. Quantize only attention — yqa; noise Na = ||yqa — ysoll3

3. Quantize only residual — noise Np; quantize both — N4 g

4. Report linear SNRs S/N,, then convert to dB

5. Verify uncorrelated noise: report corr (Y, Yqa — Yip) and corr(Ysp, Yoqr — Ytp)

This makes the “carrier/modulation” claim reproducible and testable.

8 Operational Natural Precision

In practice, we cannot enumerate supp(X) for large tensors. We define an operational proxy:
Definition 7 (Operational Natural Precision).
ba(X) = Ha(X) + ¢

where HA(X) is the discretized entropy at bin width A and € accounts for rare events. For
continuous X , discretized entropy relates to differential entropy h(X) via HA(X) = h(X)—logy A+
o(1) in the high-resolution regime.

For well-behaved distributions:
e Gaussian with std o1 Ha(X) ~ logy(0/A) 4 § logy(2me) ~ logy(o/A) +2.05
e Uniform on [a,b]: HA(X) = logy((b—a)/A)

e Sparse (many zeros): Ha(X) reduced by sparsity entropy



Refinement: For tensors where arbitrarily close values should be considered distinct, an e-
covering number N (supp(X), |- ||, €) provides a more robust notion than raw cardinality, connecting
to rate-distortion theory [8].

Jacobian proxy for task-relevance: Let Jg(z) be the Jacobian of downstream network G
at z. The projected quantization error

etask(2) = [Ja(2)(Q(2) — 2)]l2

measures how much quantization noise propagates to task-relevant outputs. Minimizing E[egask(Z)]
at fixed bit rate is an operational surrogate for preserving task-relevant information. This connects
to GPTQ’s Hessian criterion: flat Hessian directions have small ||Jg|| and tolerate coarse quanti-
zation.

KL divergence as kernel trick: Computing Jg is expensive. For language models, a practical
alternative is the KL divergence between output distributions:

Pp(v)
pQ(v)

DKL(pprpQ) = prp(v) log
v

where pg, and pg are next-token distributions from the full-precision and quantized models. This
captures task-relevant information loss without explicit Jacobian computation:

e Dk, = 0: quantization is an epilogue (no task-relevant information lost)
e Dk1, > 0: some task-relevant distinctions collapsed
e Per-layer KL (with frozen downstream): localizes information loss

This is the same quantity minimized by knowledge distillation, providing a unified view: distilla-
tion teaches a smaller model to be an epilogue of the larger one.

9 Implications

For quantization: The goal is not “minimize error” but “preserve information.” A 4-bit quan-
tization that is bijective on the realized support is perfect. A 16-bit quantization that collapses
distinct realized values is lossy.

For mixed precision: Different tensors have different natural precision. Uniform precision
wastes bits on low-information tensors and starves high-information ones. Optimal allocation
matches precision to information content.

For architecture design: Architectures that separate high-information paths (residuals) from
low-information paths (attention deltas) enable aggressive quantization of the latter.

For theory: The continuous/discrete distinction is less important than the information/non-
information distinction. A tensor’s “precision requirement” is not about numerical accuracy but
about preserving the bijection on realized support.

10 Relation to Classical Theory

The framework connects to classical results:

e Rate-distortion theory [9, §]: The Shannon lower bound gives the minimum bits to achieve
distortion D. Our b%(X) is the finite-sample, task-specific analogue.



e Entropy-constrained quantization: Lloyd-Max and entropy-constrained VQ minimize
distortion at fixed rate. Our claim is that successful neural quantization implicitly solves this
for task-relevant distortion.

e Companding [I3]: Non-uniform quantization (p-law, A-law) allocates precision to high-
density regions. SmoothQuant/AWQ are learned companders for neural activations.

e Information bottleneck: Tishby’s framework compresses representations while preserving
task-relevant information. Epilogues are the “free” compressions that lose no task-relevant
bits.

Our contribution is the unifying lens: successful quantization methods are support-
shaping transformations that achieve (relaxed) injectivity on the task-relevant quotient
space.

11 Limitations

e Distribution dependence: supp(X) and task-equivalence depend on the deployment distri-
bution D. Calibration sets may not capture rare events or distribution shift. Safety margins
(e.g., Lipschitz bounds, widened codebooks) are needed for robustness.

e Entropy estimation: Noisy for high-dimensional tensors; recommend per-channel estima-
tion with bootstrap confidence intervals.

e Task-relevance approximation: The Jacobian proxy Jg is local; global task-relevance
may differ. The equivalence ~, depends on tolerance choice.

e Practical vs fundamental costs: We distinguish the Landauer lower bound (information-
theoretic) from practical energy (memory, switching). The former motivates the framework;
the latter dominates real systems.

Precision is not a computational parameter.
It is a physical quantity determined by information content.
Additional bits have no Landauer lower bound but are computationally wasteful.
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